Palaeogenomics of Mycobacterium tuberculosis: epidemic bursts with a degrading genome Zoheira Djelouadji PhD et al., Lancet Infectious Diseases, Early Online Publication, 13 June 2011
Summary
Genome-scale analysis suggests that the last common ancestor of the Mycobacterium tuberculosis complex and Mycobacterium leprae diverged 36 million years ago, and members of the Mycobacterium tuberculosis complex differentiated 40 000 years ago. Analysis of palaeomicrobiological data from a 17 000-year-old sample from a bison and a 9000-year-old sample from a human being suggested that M tuberculosis preceded Mycobacterium bovis and related species. Whole-genome comparisons show that members of the M tuberculosis complex form a unique bacterial species with distinct ecotypes that are transmissible from any infected mammalian species to several others. Genomic deletions identified several M tuberculosis lineages that could be placed on a phylogeographical map, suggesting adaptation to local host populations. The degrees of transmissibility and virulence vary between M tuberculosis clones, with increased virulence mainly linked to gene loss in regulatory pathways. Such data suggest that most M tuberculosis clones have a restricted spreading capacity between the host population, allowing unpredictable bursts of highly transmissible, virulent, and successful clones, such as the east Asian (Beijing) clone. Advances in genomics have helped the development of molecular techniques for accurate identification of species and clones in the M tuberculosis complex, which is essential for tracing the source of infections.
http://www.thelancet.com/journals/laninf/article/PIIS1473-3099(11)70093-7/abstract
Summary
Genome-scale analysis suggests that the last common ancestor of the Mycobacterium tuberculosis complex and Mycobacterium leprae diverged 36 million years ago, and members of the Mycobacterium tuberculosis complex differentiated 40 000 years ago. Analysis of palaeomicrobiological data from a 17 000-year-old sample from a bison and a 9000-year-old sample from a human being suggested that M tuberculosis preceded Mycobacterium bovis and related species. Whole-genome comparisons show that members of the M tuberculosis complex form a unique bacterial species with distinct ecotypes that are transmissible from any infected mammalian species to several others. Genomic deletions identified several M tuberculosis lineages that could be placed on a phylogeographical map, suggesting adaptation to local host populations. The degrees of transmissibility and virulence vary between M tuberculosis clones, with increased virulence mainly linked to gene loss in regulatory pathways. Such data suggest that most M tuberculosis clones have a restricted spreading capacity between the host population, allowing unpredictable bursts of highly transmissible, virulent, and successful clones, such as the east Asian (Beijing) clone. Advances in genomics have helped the development of molecular techniques for accurate identification of species and clones in the M tuberculosis complex, which is essential for tracing the source of infections.
http://www.thelancet.com/journals/laninf/article/PIIS1473-3099(11)70093-7/abstract
No comments:
Post a Comment