Monday 6 May 2013

MALARIA: insecticide resistance


From:William Brieger


Date:Sun, May 5, 2013 8:42 am
studying insecticide resistance in Cote d'Ivoire 

Background

An experimental hut station built at M'Be in 1998 was used for many years for the evaluation of insecticidal product for public health until the civil war broke out in 2002. Breeding sites of mosquitoes and selection pressure in the area were maintained by local farming practices and the West African Rice Development Association (WARDA, actually AfricaRice) in a large rice growing area. Ten years after the crisis, bioassays, molecular and biochemical analyses were conducted to update the resistance status and study the evolution of resistance mechanisms of Anopheles gambiae s.s population.

Methods

Anopheles gambiae s.s larvae from M'Be were collected in breeding sites and reared until emergence. Resistance status of this population to conventional insecticides was assessed using WHO bioassay test kits for adult mosquitoes, with 10 insecticides belonging to pyrethroids, pseudo-pyrethroid, organochlorides, carbamates and organophosphate with and without the inhibitor piperonyl butoxyde (PBO). Molecular and biochemical assays were carried out to identify the L1014F kdr, L1014S kdr and ace-1R alleles in individual mosquitoes and to detect potential increase in mixed function oxidases (MFO) level, non-specific esterases (NSE) and glutathione S-transferases (GST) activities.

Results and discussion

Anopheles gambiae s.s from M'Be exerted high resistance levels to organochlorides, pyrethroids, and carbamates. Mortalities ranged from 3% to 21% for organochlorides, from 50% to 75% for pyrethroids, 34% for etofenprox, the pseudo-pyrethroid, and from 7% to 80% for carbamates. Tolerance to organophosphates was observed with mortalities ranging from 95% to 98%. Bioassays run with a pre-exposition of mosquitoes to PBO induced very high levels of mortalities compared to the bioassays without PBO, suggesting that the resistance to pyrethroid and carbamate relied largely on detoxifying enzymes' activities. The L1014F kdr allelic frequency was 0.33 in 2012 compared to 0.05 before the crisis in 2002. Neither the L1014S kdr nor ace-1R mutations were detected. An increased activity of NSE and level of MFO was found relative to the reference strain Kisumu. This was the first evidence of metabolic resistance based resistance in An. gambiae s.s from M'Be.

Conclusion

The An. gambiae s.s population showed very high resistance to organochlorides, pyrethroids and carbamates. This resistance level relied largely on two major types of resistance: metabolic and target-site mutation. This multifactorial resistance offers a unique opportunity to evaluate the impact of both mechanisms and their interaction with the vector control tools currently used or in development.

No comments:

Post a Comment